Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 184 (2021) 785-790

www.elsevier.com/locate/procedia

The 2nd International Workshop on the Advancements in Model Driven Engineering (AMDE)
March 23 - 26, 2021, Warsaw, Poland

Ethereum’s Smart Contracts Construction and Development using
Model Driven Engineering Technologies : a Review

Yassine Ait Hsain®*, Naziha Laaz?, Samir Mbarki?

4 Information Modeling and Communication Systems Team, EDPAGS Laboratory, Faculty of Science, Ibn Tofail University, Kenitra, Morocco

Abstract

In the Blockchain context, Smart Contracts are computer programs that run on the Ethereum platform. Benefiting from the proper-
ties of Blockchain, SCs development represents a major challenge to developers, as the code is deployed to an immutable system,
besides the Ethereum platform is still evolving. This paper highlights how we can exploit model-driven engineering for generating
long terms and high productivity smart contracts. It reviews researches on Smart Contracts generation in the Ethereum blockchain
from a model-driven perspective. Based on the studied approaches, we defined a comparative framework to outline the advantages
and disadvantages of each approach. The result can be used as a basis of tool selection for specific development aspects of SCs.

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Smart Contracts (SCs); Ethereum; Blockchain; Model-Driven Engineering (MDE); Modeling; Business Process Model and Notation
(BPMN); Unified Modeling Language (UML).

1. Introduction

Blockchain has gained an extensive attention in many fields, making its first appearance in Bitcoin [21], a cryp-
tocurrency that have reached over 650 billion dollar up today[6]. While the power of Bitcoin was recognizable, many
were trying to move beyond cryptocurrency applications and there was Ethereum [30]. Over the few past years,
Ethereum technology has attracted considerable attention and popularity in academic and industrial areas since its
creation in 2015 [29]. The platform has now become the second largest cryptocurrency in circulation [5].

Based on blockchain, the Ethereum platform makes it possible to store and transmit information transparently,
securely and without central control intermediaries. The Ethereum currency "Ether" is largely inspired by Bitcoin,
but what makes this platform exceptional is the use and execution of Smart Contracts (SCs). Smart contracts repre-
sent automated programs that can send and receive transactions, offering developers the power of high availability,
auditability, transparency, and neutrality [2].

* Corresponding author. Tel.: +212-610-208-630 ;
E-mail address: yassine.aithsain@uit.ac.ma

1877-0509 © 2021 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

10.1016/j.procs.2021.03.097

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2021.03.097&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

786 Yassine Ait Hsain et al. / Procedia Computer Science 184 (2021) 785-790

One of the big challenges facing developers in Ethereum Blockchain is the nature of deployment system which is
immutable. The development in this platform is structured in several stages, with major adjustments occurring at each
stage. Each development step can include releases known as "hard forks", which radically change the platform, making
the code of Smart Contracts no longer working [1]. Hence, developers have to deploy code taking into consideration
the continuous evolution of the Ethereum platform. In other words, if a "hard fork" emerges, developers need to retain
some control over their smart contracts in order to recycle and restart them.

Model-driven Engineering (MDE) can help meet the technical challenges and issues of Ethereum Blockchain
development. Towards this end, MDE proposes a high level of abstraction representation to address heterogeneity
and system complexity. This engineering goes beyond the pure development activities and encompasses other model-
based tasks of a complete software engineering process. It is based on capitalization to enable re-usability, automatic
adaptation of systems, and sustainable development in terms of time, cost and effort. This engineering is based on
three concepts: Model, Metamodel and Model Transformation, which are essential for the automation of development
processes and the generation of applications from models [24].

Having said that, many researchers have opted to use MDE to alleviate the complexity of Smart Contracts develop-
ment. Indeed, researchers have proposed approaches that automatically generate SCs by identifying the elements of
modeling a smart contract independently of the technical aspect of the Ethereum platform, thus treating both the static
and behavior aspects of SC effectively. The challenges faced in this work, are the identification and the study of all
these MDE-based approaches for modeling and generating SCs, in order to understand: what types of models are used
to design smart contracts and how they are built? does it follow any standard? How these models are transformed?
Are these transformations developed according to the MDE approach? Also, how the code generation is done?

To answer these questions, this paper presents a review study based on a comparative framework of most relevant
researches, that have been conducted to solve this matter using MDE. It is organized as follows: After the introduc-
tion, Section 2 presents the studied approaches identified in the literature review of Blockchain modeling and SCs
development using MDE. The analysis and results are discussed in Section 3. Section 4 concludes the paper.

2. Modeling Approaches for Smart Contracts Development using MDE

In this section, we will discuss the studied approaches regarding the generation of Ethereum’s Smart Contracts
using Model-Driven Engineering (MDE), as well as other works related to modeling and Blockchain. These papers
were identified after a deep review of the literature, searching by several criteria ranging from general to specific,
in order to find all the relevant approaches applying MDE in Blockchain platforms, in particular those proposing
solutions for the generation of smart contracts.

The first approach we encountered during our research was Lorikeet [28]. Starting from a BPMN models and
fungible/non-fungible registry data schemas, they generated standardised ERC-20/ERC-721 compliant asset registry
smart contracts. Lorikeet’s BPMN Modeler is based on bpmn-js modeling library. This library is licenced to bpmn.io
which by itself a branch of Camunda. This leads us to the next tool which is Caterpillar [16], another work of the
same author that uses Camunda which is an open-source workflow and decision automation platform. The advantage
of Camunda beside being upgradable is the fact that it relies on OMG standards CMMN and DMN. These two
studied tools [28, 16] focused on using BPMN, which is constrained to support only the concepts of modeling that
are applicable to Business Processes. This means that other types of modeling done by organizations for business
purposes is out of scope for BPMN [22].

BlockME [9] another approach that supports the modeling and execution of blockchain-aware business processes
to allow external applications, to communicate with blockchains systems while taking care of blockchain specificities.
The approach focuses on generating a BPMN 2.0-based business process that can communicate with the Blockchain
Access Layer (BAL), a middleware allow external application to exchange transactions with public blockcahin sytems.

BMPN?2 process engine, Activiti (http://activiti.org/) is redesigned by [11], so that business processes are imple-
mented as a SC maintaining the properties of the Blockchain. They have defined a pipeline model allowing to separate
the management of states on several BCs and the execution of SCs by creating blocks in concurrent manner.

Adding to the mentioned approaches above we have FSolidM, an Open Source Framework [18] which like [28, 16]
is built on top of a Model-Driven tool (WebGME) [17]. FSolidM uses Finite State Machine Model that is represented
graphically and Data attributes as inputs to generate Smart Contracts code. In addition the framework extends a set

Yassine Ait Hsain et al. / Procedia Computer Science 184 (2021) 785-790 787

of security plugins that can alleviate some common security issue namely the "DAO" attack. the main features of
FSolidM are: Formal Model, Graphical Editor, Code Generator and Security Plugins [19]. Lacking from formal oper-
ational semantics, FSolidM was introduced in 2019 as VeriSolid or FSolidM / VeriSolid Framework [20], to address
formal verification capabilities thereby providing an approach for correct-by-design smart contracts development.

Another studied approach is [11], that differentiate from others in terms of input models with the use of UML
Statechart model. The used elements are simple and composite states (including history states) alongside with state
transitions in order to express the state of a cyber-physical. These transitions will be mapped to blockchain transaction
to which the code is generated. The authors of this work highlight the behavioral aspect of SC by choosing one of the
dynamic models proposed by UML which is the Statchart model. Furthermore, the particularity of this approach is
that it defines mapping rules between Statechart and Solidity elements, which is not the case for the other approaches.

In this work [25], the authors propose an open source environment designing a smart contract model and generating
equivalent code automatically. They elaborate a class diagram to define a visual domain specific language, and for the
process design part, this approach uses a set of BPMN and DEMO (DMN) models.the authors have created four
models to define elements of Smart Contract, taking into account its different modeling views; Transaction kinds,
actor roles, processes, data model and action rules. By analysing this approach, we notice that the repository of the
mentioned environment is not based on MDE Technologies. Hence, it uses DEMO technologies. Also, the presented
metamodel is nothing but a class diagram with different concepts of a smart contract.

[15] represents an MDA-based approach defines a unifying model as a UML class diagram. Based on literature
from legal informatics and blockchain research, this model describes legal States, actions, roles and data sources
which represent the most important component of legal smart contracts. The main goal of this approach is to compare
and assess existing modeling languages for legal smart contracts development with regards to the proposed unifying
model.

The approach [26] founded on MERODE (a method that relies on MDE and artifact-centric BPs to design and
implement intra-organizational Enterprise Information Systems) is a recent published approach consisting of model-
driven engineering and artifact-centric business processes to generate Smart contracts [26] and blockchain-based
information systems [8] supporting cross-organizational collaborations.This approach is based on five layers: Domain
Layer, Permission Layer, Core Information System Services Layer, Information System Services Layer and Business
Process Layer.

In [10], the authors have introduced a process that automates the translation of institutional constructs into codified
machine- readable contractual rules to address smart contracts to non-developers as it express human-readable insti-
tutional rules, regulations, and laws in terms of ADICO statements that capture high-level institutional semantics then
those sentences are mapped and transcribed into Solidity code.

Last but not least, the Smart Contract Engineering (SCE) is introduced in [12]. This method presents a roadmap
of SC verification from its formal modeling with Event-B to model transformation, to verification, to solidity code
generation and conformance testing. The main goal of SCE method is to meet the requirements of the design and
development of large-scale smart contracts.

3. Analysis and Discussion

This Section discusses all studied approaches cited in the section above, by proposing a comparative framework
while considering various criteria. First, we have identified criteria representing both the basis for the development
of SCs following model-driven engineering as well as a baseline for an objective comparison and evaluation of the
studied approaches.

The main criteria of the considered approaches are : year of publication, MDE principals, code generation from
input to output to the implementation of security concepts, and used technologies. Some criteria are divided into
sub-features as follows :

e Year of publication

e Implementing MDE : Model definition, Metamodel definition and Model Transformation.
e Code generation : input, output and the implementation of security concepts.

e Used technologies : exploited or extended.

788 Yassine Ait Hsain et al. / Procedia Computer Science 184 (2021) 785-790

Table 1. Comparative table of the studied approaches using MDE for the generation of Smart contracts.

Implementing MDE Code generation
Studied Approaches/Tools Year Model Meta- Model input output Imple- Used
Def- model Trans- menting tech-
ini- def- for- Security nologies
tion ini- ma-
tion tion
SC Engineering [12] 2020 no no yes Event-B model Solidity no ATL
code lan-
guage
B-MERODE [26] 2020 yes no no Existing Dependency - - -
Graph, Object-Event
Table and FSM
The Development of SCs 2019 yes yes yes UML Class diagram, OCL Solidity no Obeo’s
for Heterogeneous BCs Constraints code, Acceleo,
[27] Hyper- Papyrus
ledger
code
BlockME [9] 2019 yes no yes BlockME Process Model Standard- no Camunda’s
Compliant BPMN-
Process modeler
Model [3]
VeriSolid [20] 2019 yes no yes Smart Contracts as Transi- Solidity yes WebGME
tion System, Properties code [17]
Das Contract [25] 2019 yes - - Contract Structure Di- Solidity no Angular
agram (DEMO OCD code and
Model), Contract Process Nodejs
Diagram (BPMN and
DMN Models.), Contract
Data Model (DEMO OFD
Model), Contract Action
Diagram(Brockly)
FSolidM [18] 2018 yes no yes FSM Model Solidity yes WebGME
code [17]
Lorikeet [28] 2018 yes no yes Business process model, Solidity no BPMN-
Asset registry data model code IS [4]
Towards ~ Model-Driven 2018 yes no yes Uml Statchart Model Solidity no YAKINDU
Engineering of Smart code State-
Contracts for Cyber- chart
Physical Systems [11] Tools
[31]
Caterpillar [16] 2017 yes no yes Business process model, Solidity no Camunda’s
process variable def- code BPMN-
initions, solidity code modeler
for script tasks, code [3]
specifying the exchange
of information from/to
user/service tasks.
From Institutions to Code: 2016 no no no ADICO statements Solidity no ADICO[7],
Towards Automated Gen- code Scala[23]

eration of Smart Contracts
[10]

(-) : refers to an ambiguity while analysing the paper for the specified criteria.

The result of the evaluation criteria analysis is summarized in Table 1, which is deducted from all the selected
approaches. By constructing this table, which represents a comparative table of all the approaches studied according
to each criterion, we observed that the majority of these articles validated our proposed criteria, which justifies our
relevant choice of articles for this review study.

Yassine Ait Hsain et al. / Procedia Computer Science 184 (2021) 785-790 789

Others
7%

UML State-chart
14%

BPMN

36%

Finite State Machine
22%

Fig. 1. Distribution of Models type used for the SCs modeling.

Based on the used model, these approaches can be divided into three categories. A dominant category interested
by the behavioral aspect of smart contracts, modeling business processes by both BPMN and UML statechart models
[9, 25, 28, 16]. A second category no less important than the first one, which focuses on the modeling of the static
aspect using the class diagram of the UML standard [27]. While the third and last category designs the formal aspect
of smart contracts using several representations such as finite state machine model [18, 26], Events B [12], OCL or
Ontologies [27].

For the meta-model definition criteria, we see that most approaches does not cover it. However, only one work
proposes a meta-model for Ethereum Smart Contracts [25], which is nothing but a class diagram with the different
concepts of SCs. As for the third criteria related to transformation between models, we observe that the majority of
approaches do not focus on the model-to-model transformation, and others defines a mapping rules using a natural
language such as [27, 9]. Elsewise, the only approach that apply an automatic transformation (M2T) using ATL Trans-
formation language is [12]. The other works transform its models directly implementing model to text transformation.

In terms of code generation, we notice that [26] addresses it in future works, without showing any tangible results,
other than [12, 27, 9, 20, 25, 18, 28, 11, 16, 10] that showed the applicability of their method reaching significant
results. Another point is that all the studied approaches have selected Solidity programming language as the targeted
code output.

As shown in Figure 1, we illustrate by a pie chart the distribution of the studied approaches according to the used
model type. As reported, you may notice that 36% use BPMN models to represent Smart contract processes and 22%
employ Finite State Machine, while approaches based on UML State Chart and Class diagram represent 14% each.
Finally, few works implemented other methods covering formal aspects by a percentage of 7%.

We conclude that most of the approaches commonly based on BPMN which is considered as an OMG standard for
the representation of the business process. While BPMN shows the flow of data (Messages), and the association of data
artifacts to Activities, it is not a data flow language. In addition, operational simulation, monitoring and deployment of
Business Processes are out of scope of this specification [14, 13]. As for the other approaches they implement different
types of model that distinguish each one of them.

4. Conclusion

This paper highlights the use of MDE aspects such as metamodelling and model transformation for the early
validation of smart contract properties and the possibility of automatic generation of code in Blockchain platforms.
It provides a review of the research status on this matter. While filtering the approaches that use MDE technologies
for generating SCs from the collected papers, we have observed that few studies have been conducted concerning this
topic.

After analysing all the studied approaches, we were convinced that Ethereum can benefit from MDE technolo-
gies particularly in specifying the concepts of SCs on different metamodelling levels, which in turn allows for the

790 Yassine Ait Hsain et al. / Procedia Computer Science 184 (2021) 785-790

application of automated managing and maintaining. Moreover, we have emphasized the most used solutions and
technologies that automatically generate SCs. In the future, our investigations will address the question on how to
extend the existing approaches to include other model-based aspects during the construction and generation of SCs.

References

[1] Antonopoulos, A.M., Wood, G., 2019. Mastering Ethereum. volume 53. URL: https://github.com/ethereumbook/ethereumbook,
arXiv:arXiv:1011.1669v3.
[2] Buterin, V., et al., 2014. A next-generation smart contract and decentralized application platform. white paper 3.
[3] Camunda, . Modeler | Camunda. URL: https://camunda.com/products/camunda-bpm/modeler/.
[4] Camunda Services GmbH, 2016. BPMN 2.0 rendering toolkit and web modeler | bpmn.io. URL: https://bpmn.io/toolkit/bpmn-js/
https://bpmn.io/.
[5] Chen, W., Zhang, T., Chen, Z., Zheng, Z., Lu, Y., 2020. Traveling the token world: A graph analysis of ethereum erc20 token ecosystem, in:
Proceedings of The Web Conference 2020, pp. 1411-1421.
[6] CoinMarketCap, 2020. Cryptocurrency Prices, Charts And Market Capitalizations. URL: https://coinmarketcap.com/.
[7] Crawford, S.E.S., Ostrom, E., 1995. A Grammar of Institutions. American Political Science Review 89, 582-600. doi:10.2307/2082975.
[8] De Sousa, V.A., Burnay, C., Snoeck, M., 2020. B-merode: A model-driven engineering and artifact-centric approach to generate blockchain-
based information systems, in: International Conference on Advanced Information Systems Engineering, Springer. pp. 117-133.
[9] Falazi, G., Hahn, M., Breitenbiicher, U., Leymann, F., 2019. Modeling and execution of blockchain-aware business processes. SICS Software-
Intensive Cyber-Physical Systems 34, 105-116.
[10] Frantz, C.K., Nowostawski, M., 2016. From institutions to code: Towards automated generation of smart contracts, in: 2016 IEEE st Interna-
tional Workshops on Foundations and Applications of Self* Systems (FAS* W), IEEE. pp. 210-215.
[11] Garamvolgyi, P., Kocsis, L., Gehl, B., Klenik, A., 2018. Towards model-driven engineering of smart contracts for cyber-physical systems, in:
2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W), IEEE. pp. 134-139.
[12] Hu, K., Zhu, J., Ding, Y., Bai, X., Huang, J., 2020. Smart contract engineering. Electronics 9, 2042.
[13] Kharmoum, N., El Bouchti, K., Laaz, N., Rhalem, W., Rhazali, Y., 2020. Transformations’ study between requirements models and business
process models in mda approach. Procedia Computer Science 170, 819-824.
[14] Laaz, N., Kharmoum, N., Mbarki, S., 2020. Combining domain ontologies and bpmn models at the cim level to generate ifml models. Procedia
Computer Science 170, 851-856.
[15] Ladleif, J., Weske, M., 2019. A unifying model of legal smart contracts, in: International Conference on Conceptual Modeling, Springer. pp.
323-337.
[16] Lopez-Pintado, O., Garcia-Banuelos, L., Dumas, M., Weber, 1., 2017. Caterpillar: A blockchain-based business process management system.,
in: BPM (Demos).
[17] Mardéti, M., Kecskés, T., Kereskényi, R., Broll, B., Volgyesi, P., Jurdcz, L., Levendovszky, T., Lédeczi, A., 2014. Next generation (meta)
modeling: web-and cloud-based collaborative tool infrastructure. MPM@ MoDELS 1237, 41-60.
[18] Mavridou, A., Laszka, A., 2018a. Designing secure ethereum smart contracts: A finite state machine based approach, in: International Confer-
ence on Financial Cryptography and Data Security, Springer. pp. 523-540.
[19] Mavridou, A., Laszka, A., 2018b. Tool demonstration: Fsolidm for designing secure ethereum smart contracts, in: International Conference on
Principles of Security and Trust, Springer. pp. 270-277.
[20] Mavridou, A., Laszka, A., Stachtiari, E., Dubey, A., 2019. Verisolid: Correct-by-design smart contracts for ethereum, in: International Confer-
ence on Financial Cryptography and Data Security, Springer. pp. 446—465.
[21] Nakamoto, S., Bitcoin, A., 2008. A peer-to-peer electronic cash system. Bitcoin.—URL: https://bitcoin. org/bitcoin. pdf 4.
[22] OMG, 2011. Business Process Model and Notation (BPMN). Object Management Group, formal/2011-01-03. URL: http://www.omg.org/
spec/BPMN/2.0.
[23] Scala, 2011. The Scala Programming Language. URL: https://www.scala-lang.org/http://www.scala-lang.org/.
[24] Schmidt, D.C., 2006. Model-driven engineering. doi:10.1109/MC.2006.58.
[25] Skotnica, M., Pergl, R., 2019. Das contract-a visual domain specific language for modeling blockchain smart contracts, in: Enterprise Engi-
neering Working Conference, Springer. pp. 149—166.
[26] de Sousa, V.A., Burnay, C., Snoeck, M., 2020. B-merode: A model-driven engineering and artifact-centric approach to generate smart contracts,
in: Conference on Advanced Information Systems Engineering, LNCS-Springer-Verlag.
[27] Syahputra, H., Weigand, H., 2019. The development of smart contracts for heterogeneous blockchains, in: Enterprise Interoperability VIII.
Springer, pp. 229-238.
[28] Tran, A.B., Lu, Q., Weber, 1., 2018. Lorikeet: A model-driven engineering tool for blockchain-based business process execution and asset
management., in: BPM (Dissertation/Demos/Industry), pp. 56-60.
[29] Vujici¢, D., Jagodi¢, D., Randié, S., 2018. Blockchain technology, bitcoin, and ethereum: A brief overview, in: 2018 17th international
symposium infoteh-jahorina (infoteh), IEEE. pp. 1-6.
[30] Wood, G., 2014. Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper , 1-
32arXiv:arXiv:1011.1669v3.
[31] Yakindu, . YAKINDU Statechart Tools (SCT) — state machine tool. URL: https://www.itemis.com/en/yakindu/state-machine/.

